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LETTER TO THE EDITOR 

Crossover between invasion percolation and the Eden model in 
one dimension 
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t Groupe de Physique des Solides de I’Ecole Normale SupCrieure, 24 rue Lhomond, 75231 
Paris Cedex 05, France 
$ Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 

Received 3 March 1986 

Abstract. The crossover between invasion percolation (IP) and the Eden model is studied 
in one dimension. Although the mean run length diverges in IP, it converges in the Eden 
model and for a broad class of perturbations to IP. In addition, I P  has anomalous fluctuation 
effects which are absent in the Eden model. By studying a specific family of models which 
interpolate between the I P  (a = 0) and Eden (a =$) limits, we show that the behaviour of 
the variance crosses over to that found in the Eden model for any a > 0. 

Invasion percolation (IP) has been advanced as a model of immiscible fluid displace- 
ment in porous media (Lenormand and Bories 1980, Chandler et a1 1982, Wilkinson 
and Willemsen 1983). In this model each site is assigned a random number, and at 
each time step the boundary site with the least random number is accepted into the 
clusterll. IP  is an inherently kinetic model which generates clusters that apparently 
have the same fractal dimension as the infinite cluster at threshold in ordinary percola- 
tion. The Eden model, on the other hand, has clusters of finite density even though 
it too is a kinetic growth model (Eden 1961, Richardson 1973). The growth rule in 
this model is that at each time step one of the boundary sites is randomly chosen and 
added to the cluster. Recently, Martin er a1 introduced a family of models which 
interpolate between IP  and the Eden model and studied the crossover in two dimensions 
by a Monte Carlo procedure. In their model a ‘temperature-like’ parameter A describes 
the fluctuations of the random medium, and the limits A = 0 and A = CO correspond to 
IP  and the Eden model respectively. Their Monte Carlo results strongly suggest that 
for any A > 0 the clusters are fractal up to a cut-off length, after which they are compact. 
In addition, Lenormand has argued that IP scaling behaviour is observable only for 
very small capillary numbers. 

In this letter we present an analytical study of the crossover between I P  and the 
Eden model in one dimension   ID)^. Although both IP and the Eden model have 
compact clusters in ID, there are interesting fluctuation effects in IP that are absent in 
the Eden model. To be specific, the variance of the distribution and the asymptotic 

4 Present address: IBM T J Watson Research Center, Yorktown Heights, PO Box 218, NY 10598, USA. 
11 A ‘trapping’ rule must be added to this prescription if the displaced fluid is incompressible (Chandler et 
a1 1982, Wilkinson and Willemsen 1983). 
7 Analytical results on IP have also been given in two other works (Nickel and Wilkinson 1983, Chayes el 
a1 1985). 
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value of the mean run length have qualitatively different behaviour in the two models. 
We shall show that for any of a large class of perturbations to the IP growth rule, the 
mean run length (to be defined below) tends to a finite constant, whereas this quantity 
diverges in IP. In addition, a family of models with a parameter a that interpolates 
between the IP (a = 0) and Eden (a = i) limits is introduced. This family will be called 
the a model. We demonstrate that for any a > 0 the behaviour of the variance crosses 
over to that found in the Eden model. Thus, our exact results support the belief-based 
on Monte Carlo simulations (Martin et a1 1984) and phenomenological arguments 
(Lenormand 1985)-that IP scaling behaviour is disrupted by small perturbations. 
Extensions of our work to higher dimensions will appear elsewhere (Nadal 1986). 

In the class of models we are considering there is a fixed random number ri 
associated with each site i. In IP, for example, the random numbers describe the local 
resistance to fluid flow. These r, are implicitly ordered: lower values are favoured for 
continued growth. In general the process will depend on how the ri are distributed. 
The precise form of the distribution of random values is irrelevant in IP, however, 
since the smallest value is always chosen (only the overall order matters, not the relative 
magnitudes). In the Eden model the distribution of random numbers is completely 
irrelevant, since the probability of selecting a site is independent of the value of its 
random number. Throughout this letter we assume the r, are uniformly distributed in 
the interval [0, 11. 

We assume the growth of a cluster at a given time depends only on the values of 
the ri at the boundary. Therefore the kinetics of the problem are contained in a choice 
function p (  r i ;  B - { r , } )  which gives the probability that a boundary site with random 
number r, is chosen when the set of boundary values is B. The choice function will 
also be required to have the natural property that the probability of choosing r, from 
B increases if ri is decreased or if one or more of the other boundary values are increased. 

Once the distribution of site values and the choice function p are given, the growth 
process is completely specified for any initial set of occupied sites. I P  has the choice 
function p (  ri;  B - { r i } )  = IIr,sB-{r,}@( rj - r , ) ,  where 0 is the Heaviside distribution. The 
Eden model is obtained for p ( r i ;  B - { r i } )  = IBI-', where 1BI is the number of sites in B. 

In I D  these growth models become particularly simple. There are only two boundary 
sites so the choice function can be written as p (  rl , r2) ,  the probability that rl is chosen 
when the site values are r ,  and r 2 .  Our monotonicity assumption means that p must 
be a decreasing function of rl and an increasing function of r 2 .  It will be useful to 
define @( r )  = 5 dr'p(rt, I ) ,  the probability that the value r is not chosen. Note that 
@( r )  is an increasing function and that @( r )  = r for I P  and @( r )  = for the Eden model. 

The growth of the cluster may be broken down into a series of runs in which sites 
are repeatedly selected on one side of the cluster. During such a run, the values chosen 
are all compared with the same value. The value of the kth distinct random number 
which is rejected will be called the kth stopping value and will be denoted by rk .  The 
kth run ends when a value on the growing side is compared with rk and is not chosen. 
The rejected value then becomes rk+, and the cluster then grows on the opposite side 
from its starting point at the random number r k .  Note that in I P  the sequence { r k }  is 
strictly increasing. The probability distribution for the kth stopping value will be 
denoted n k ( r ) ,  and the length of the kth run will be denoted by nk.  We will show 
that the mean run length (nk) diverges as k + 00 in IP, whereas if the I P  growth rule is 
changed slightly (n,) = limk.+,( nk)  is finite. 

To study ( n k )  we first develop a recursion relation for n k ( r ) .  Note that if rt  is the 
kth stopping value, then the kth run is a succession of independent events in which 
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r r  is not chosen, followed by one event in which the (k + 1)th stopping value r is chosen 
over r’. Summing over the possible run lengths we obtain 

The mean run length of the kth run is then 

The n k  are easily evaluated in IP and the Eden model. Suppose that only the origin 
is occupied at time t = 0. For IP  the initial distribution is then I I , ( r )  = 2r. Combining 
this with the recursion relation (1) we obtain 

) (3) 
k 

rIk+1(r)=2(-1)k C [In(l - r ) lm/m! - ( l - r )  Lo 
for k 2 0, which implies that (nk) is infinite for all k Also note that limk+m n k (  r )  = 
6(r -  1). Finally, it is trivial to show that for the Eden model I Ik(r)  = 1 and ( n k ) =  2 
for kz 1. 

Next we show that the mean run length converges for a broad class of perturbations 
to the IP rule. Assume that the choice function satisfies 

p (  1,O) = E > 0 (4) 

i.e. no matter how lopsided the values on the two sides are, there is some non-zero 
probability of choosing the larger value. Monotonicity then implies that p (  rl , r2) > E 

for all rl , r , .  Since p (  rl, r2 )  + p (  r 2 ,  r l )  = 1, this also implies p (  rl , rz) S 1 - E so a( r )  S 
1 - E. Equation (1) then shows that I T k (  r) S E - ’  and hence (n,) C E - ~  < CO, provided 
n,( r) = limk-,m nk( r) exists. A theorem for Markov chains (e.g. see Feller 1966) 
guarantees the existence of n, for choice functions p satisfying (4) which are con- 
tinuously differentiable. For example, these conditions are satisfied by the choice 
function used by Martin et al, namely p (  r, r ’ )  = [ 1 + exp( k( r - r’))]-’. 

In two dimensions ( 2 ~ )  a simple measure of the radius of a cluster can be obtained 
by averaging the distance from the centre to the perimeter of the cluster over all 
directions. This average distance exhibits fractal scaling in IP but scales trivially in 
the Eden model. A simple one-dimensional ( ID)  analogue of this radius is L ( t ) ,  the 
distance reached at time t on the positive axis. In ID ( L ( t ) ) =  t / 2  by symmetry in IP 

and the Eden model, so the fractal dimension is trivial in both models. However, we 
shall show that the variance a 2 ( t ) ~ ( L 2 ( t ) ) - ( L ( t ) ) 2  scales differently in IP  and the 
Eden models. In particular, as t + CO, a( t )  - t in IP and a( t )  - t’” in the Eden model. 
To study the crossover between these two regimes, we consider a particular class of 
choice functions p (  r’,  r )  = a@( r’ - r )  + (1 - a)@( r - r’) which interpolates continuously 
between the IP  (a = 0) and Eden (a = 4) limits. We call this the a model. By explicitly 
evaluating a( t ) ,  we show that for any a > 0 the deviation a(?) crosses over to the 
Eden scaling behaviour as t + CO. 

Both IIm and (n,) can be easily computed for the a model. One obtains 
1 -2a  

n m ( r ) =  [ (2a  - l ) r + l  -a]ln(a-’-  1) 



L508 Letter to the Editor 

and 

As expected this reduces to (n,) = 2 in the Eden limit ( a  = i), and when a + 0 ( IP) ,  

(n,) diverges like ICY In a1-l. Note the presence of the logarithmic term. 
We now proceed to evaluate the deviation a2(t) .  The computation begins by 

constructing a recursion relation for the quantity g (  I ,  t ;  r ) ,  defined as the probability 
that at time t, the site 1 with random number r is rejected. This recursion is solved 
using generating functions and then the moments of the resulting functions are related 
to the moments of L ( t ) ,  in particular to a2(t) .  

Let 

P ( L ,  t ;  r ) = f ( L + l ,  t ;  r ) + g ( t - L + 1 ,  t ;  r ) .  

Then P (  L, t )  = s i  drP(  L, t ;  r )  is the probability that at time t the furthest point reached 
on the positive x axis is x = L, and 

00 

d ( t ) =  c P ( L ,  t )L2-  
L=O 

To construct a recursion formula for g(Z, t ;  r ) ,  note that if site I is rejected at time t, 
then it was a boundary site after step t - 1 .  Then either it was a boundary site before 
step t - 1 and was rejected then as well, or it bcame a boundary site at time t - 1 (site 
Z - 1 was chosen) so site - t  + I - 1 was rejected. These two possibilities combine to give 

r l  

g ( l , t ;  r ) = J  d r ’ p ( r ’ , r ) [ g ( I , t - l ;  r ) + g ( - t + Z - - l , t - l ;  r ’ ) ]  
0 

=O(r )g (1 ,  t - 1 ;  r ) +  drrp(rr, r ) g ( t - l + l ,  t - 1 ;  r ’ )  lo’ 
where we have used the fact that g(1, t ;  r )  = g ( - Z ,  t ;  r ) .  We define the generating 
function 

P ( X ,  t ;  r ) =  C X L [ g ( L + l ,  t ;  r ) + g ( t - L + l ,  t ;  r ) ] .  
LZO 

Since g ( l ,  t ;  r ) = O  for l > t + l ,  

P ( X ,  t ;  r )  = ( X L + X ‘ - L ) g ( L +  1 ,  t ;  r ) .  
L 3 0  

We also define 

The initial conditions are P ( X ,  0; r )  = X and Q ( X ,  0; r )  = 0. Using the recursion ( 5 )  
one obtains 

P ( X ,  t ;  r ) = f @ ( r ) [ ( l + X ) P ( X ,  t - 1 ;  r ) + ( l - X ) Q ( X ,  t - 1 ;  r ) ]  
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and 

Q ( X ,  t ;  r ) = $ @ ( r ) [ ( l - X ) P ( X ,  t - 1 ;  r ) + ( l + X ) Q ( X ,  t - 1 ;  r ) ]  

Note that the moments of L are obtained from the function P ( X ,  t)  by taking derivatives 
at X = 1 .  For example, 

Defining further generating functions 

P ( X ,  Y ;  r ) =  Y‘P(X,  t ;  r )  
t P 0  

and 

O W ,  Y ;  r) = c Y t Q ( X ,  t ;  r) 
f a 0  

one obtains 

Y - ’ [ P ( x ,  Y ;  r ) - X X ] = + @ ( r ) [ ( l + X ) P ( X ,  Y ;  r ) + ( l - X ) Q ( X ,  Y ;  r ) ]  

+fjo’dr’p(r’,r)[(l+X)P(X, Y ; r ’ ) - ( 1 - X ) Q ( X ,  Y ; r ’ ) ]  (10) 

and 

Y-’Q(x, Y ;  r ) = f @ ( r ) [ ( l - X ) P ( X ,  Y ;  r ) + ( l + X ) Q ( X ,  Y ;  r ) ]  

+ jo’ d r’p( r’, r )[ ( 1 - X ) P (  X ,  Y ;  r’) - ( 1 + X )  Q( X ,  Y ;  r’)  1. ( 1 1 )  

Subtracting 1 - X times (1 1) from 1 + X times (10) gives Q in terms of P: 

( l - X ) Q ( X ,  Y ;  r ) = ( l + X ) [ P ( X ,  Y ;  r ) - X ] - 2 @ ( r ) X Y P ( X ,  Y ;  I )  

- 2 X Y  I,’dr‘p(r’, r ) P ( X ,  Y ;  r’). 

Differentiating (10) with respect to r gives 

ar 
LE=’( ( 1  + X )  aP -+(l - X )  
Yar 2 a r  

+ ( 1  - 2 a ) ( l +  X ) P .  

We now differentiate (12)  with respect to r and use (13) to eliminate aQ/ar. The 
resulting first-order differential equation for P has the solution 
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The constant of integration C(X, Y) may be evaluated by substitution of (14) into 
(12) and then into (10). We obtain 

a(1- a ) X Y  (1  - aY)[l  - (1 - a)XY] 
=x[ - 1)(1 -x)ln( (1 - aXY)[ 1 - (1 - a) Y] )I - 

The relation 

a a  
Y‘(L’( t ) )  = 5,’ d r X s  XE P(X, Y; 

1 3 0  

may now be inverted to obtain (L2(  t)). Finally, we have the desired result 

+- 2 a - 1  -- a‘+’ ( 1  - - (2a - 1)(1- a + a’) 
6 ( ( 1 - 0 ) ’  a’ a’( 1 - a)2 

For the IP limit (a = 0), one obtains a’( t)  = t (  t + 1) /  12 so that the fluctuations are 
typically comparable to the size of the system. This result can also be obtained by 
showing explicitly that P( L, t)  = ( t  + 1)-’ for IP. All the models with 0 < a s f, on the 
other hand, have the limiting behaviour a’( t )  - t for large t. For the case of the Eden 
model (a = i), this is simply explained: the growth process is analogous to flipping a 
coin and counting the number of heads. This Bernoulli process has 

P(L, t )  =*-I( f )  
and therefore a’( r )  = t/4. 

The crossover between the two regimes can be examined using the scaling variable 
z = a(1- a ) t  and considering the large t behaviour of the scaled function a’( r ) / t ’  at 
fixed z. One then obtains the scaling function 

a’(t) e - ’ - l + z  
t-bm t’ 6z2 * 

F ( z ) =  lim -- - 
. .  

P( I - -a ) r  fixed 

The function F (  z )  is finite and non-zero at the origin (the IP limit) but eventually falls 
to zero like 1/62 (Eden behaviour). The crossover length is given by .$ = [a(1- a)]-’. 
Also note that as a + 0 the asymptotic run length diverges like (n,) - t/ln 5. 

Monte Carlo work (Martin et a1 1984) and phenomenological arguments (Lenor- 
mand 1985) have suggested that IP scaling behaviour is disrupted by a wide variety of 
perturbations. The analytical work presented here bears this out. We have shown that 
the divergence of the mean run length present in IP is suppressed by a broad class of 
perturbations to the I P  growth rule. We also studied a particular family of models 
which interpolates between IP (a = 0) and the Eden model (a = f). We showed that 
for any a>O, the anomalous scaling behaviour of the variance in I P  (a( t ) -  t )  is 
replaced by the behaviour found in the Eden model (a( t )  - t”’) for r >> [a( 1 - a)]-’. 

We would like to thank D Aldous, E Charlaix, S Doniach, E Guyon, J P Hulin and 
J Vannimenus for valuable discussions. One of us (RMB) received financial support 
from the Center for Materials Research at Stanford University and from Ginzton 
Laboratories. 
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